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At the earliest stage of ultrarelativistic heavy-ion collisions the produced matter is a highly populated system
of gluons called glasma which can be approximately described in terms of classical chromodynamic fields.
Although the system’s dynamics is governed by Yang-Mills equations, glasma evolution is shown to strongly

resemble hydrodynamic behavior.
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I. INTRODUCTION

Relativistic hydrodynamics is successful in describing the
evolution of quark-gluon plasma (QGP) produced in ultrarel-
ativistic heavy-ion collisions from the very early times of a
fraction of fm/c after the collision up to freeze-out at about
10fm/c, see the review articles [1-3]. This success is surpris-
ing as hydrodynamics is usually applied to systems in local
thermodynamic equilibrium while the QGP from the earliest
phase of ultrarelativistic heavy-ion collisions is expected to
be far from equilibrium and strongly anisotropic. The puzzle
of why hydrodynamic-like behavior occurs in the nonequi-
librium system from the early phase of relativistic heavy-ion
collisions can be addressed in different ways.

One possible explanation of the early onset of hydrody-
namics is based on the finding that nonequilibrium systems
tend to evolve along a hydrodynamic attractor trajectory, see
[4] and the review [5]. Those which are initially far from the
attractor approach it rapidly when the anisotropy is still high,
and then evolve along the hydrodynamic attractor.

Another explanation of the success of the hydrodynamic
approach uses the observation that the assumption of pres-
sure isotropy can be partially relaxed and the system under
consideration still behaves as a fluid. This observation led to
the formulation of anisotropic hydrodynamics, see [6,7] and
the review [8]. One takes into account that the pressure in the
direction transverse to the collision axis, pr, is usually much
larger than the longitudinal pressure, p;, at the early stage
of relativistic heavy-ion collisions. The energy-momentum
tensor is characterized not by a single pressure p, as in case
of isotropic systems, but by pr and p;. The equations of hy-
drodynamics which are provided by the continuity equation of
the energy-momentum tensor need to be supplemented not by
one but two extra constraints to close the system of equations.
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In this way the regime of applicability of a hydrodynamic
treatment is extended to nonequilibrium systems with strongly
anisotropic momentum distributions.

The authors of the study [9] found that as long as a system
is boost-invariant, and its energy-momentum tensor is trace-
less and initially diagonal, the system at the early stage of its
evolution behaves in some respects as a fluid. A similar find-
ing was presented in [10-12], see also Sec. 4.5.2 of Ref. [13],
where the glasma from the earliest stage of ultrarelativistic
heavy-ion collisions was studied. Although the system is far
from equilibrium and its dynamics is governed by the Yang-
Mills equations, glasma temporal evolution resembles that
of hydrodynamics. Specifically, an approximate eccentricity
scaling of the glasma elliptic flow was found [10-12].

The concept of glasma belongs to the color glass con-
densate effective theory (see, for example, the review [14])
which is based on a separation of scales between hard va-
lence partons and soft gluons. The glasma is the system
of coherent chromodynamic fields generated by the valence
partons of incoming nuclei. The soft gluons are approxi-
mated as classical fields while the valence partons, which
carry colored charges, are classical sources. The dynamics
of glasma fields is determined by the classical Yang-Mills
equations with sources provided by the valence partons.
Observables expressed through chromodynamic fields are ob-
tained by averaging over a Gaussian distribution of color
charges within each incoming nucleus.

Various characteristics of the glasma have been studied
for over two decades using more and more advanced nu-
merical simulations, see Refs. [15—18] as examples of recent
works in this direction. There are also analytic approaches
but usually of limited applicability. In our study we use a
method specially designed to describe the earliest phase of
relativistic heavy-ion collisions. The method is sometimes

©2024 American Physical Society
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called a ‘near field expansion.’ It was proposed in [19] and
further developed in [10-12,20-27]. The method is based on
an expansion of chromodynamic potentials in powers of the
proper time, t, which is treated as a small parameter. The
expansion allows one to solve the Yang-Mills equations itera-
tively. The results provided by the method are limited to small
values of t but they are analytic and free of numerical arti-
facts like those caused by taking a continuous limit in lattice
calculations.

In the works [10-12] by two of us the energy-momentum
tensor of glasma produced in Pb-Pb and Pb-Ca collisions was
calculated. The beginning of the process of the system’s equi-
libration is clearly seen by analyzing the temporal evolution of
the energy density, transverse, and longitudinal pressures. The
glasma collective flow characterized by the Fourier coefficient
v, was calculated by including the transverse Poynting vectors
in the analysis. It was found that v, is correlated with the spa-
tial eccentricity of the system similarly as in hydrodynamics.
The aim of this paper is to study in more detail the extent to
which the glasma behaves as a fluid and to clarify the physical
origins of this behavior.

Throughout the paper we use the natural system of units
with ¢ = h = kg = 1. Greek letters u, v, p, ... label com-
ponents of four-vectors. Vectors transverse to the collision
axis z are denoted X, and their components are indexed with
Latin letters i, j, k, .... Latin letters from the beginning of
the alphabet a, b, c... label color components of elements
of the SU(N,) gauge group in the adjoint representation.
We use three systems of coordinates: Minkowski (¢, z, x, y),
light-cone (x*, x7, x, y), and Milne (z, 7, x, y), where xt =
(t £2)/v2, 1 = V12 — 22 and n = In(x* /x7)/2. The indices
of vector and tensor components, like A’, F™, T, clearly
show which coordinates are used.

II. SUMMARY OF COMPUTATIONAL METHOD

We summarize below the method to calculate the energy-
momentum tensor of the glasma from early stage of relativis-
tic heavy-ion collisions using a proper time expansion. More
details can be found in [10,11,24].

We consider a collision of two heavy ions moving with
the speed of light towards each other along the z axis and
colliding at t = z = 0. The vector potential of the gluon field
is described with the ansatz [28]

AT(x) = OEN)OE ta(r, ¥1),

A (x) = -0 N)OE X alr, ¥1),

Al(x) = OO ! (1, 1) + O(—x )OGS (x ™, %)
+OEHO(—x )BT, X)), (H

where the functions Bi(x~, %) and Bi(x™,¥,) represent
the precollision potentials, and the functions «(t,Xx,) and
ai(r, X ) are the postcollision potentials. In the forward light-
cone the vector potential satisfies the sourceless Yang-Mills
equations but the sources enter through boundary conditions

that connect the precollision and postcollision potentials. The
boundary conditions are

o (0.31) = V@) = lim (Bj(r™. X0) + B(x", 51)),

@
@(0.5,) = o V(F) = =3 lim [0 5. B0t FL],
3)

where the notation limy_.o indicates that the width of the
sources across the light cone is taken to zero, as the colliding
nuclei are infinitely contracted.

We find solutions valid for early postcollision times by
expanding the Yang-Mills equations in the proper time .
Using these solutions we can write the postcollision field-
strength tensor, and energy-momentum tensor, in terms of the
initial potentials «(0, X, ) and &, (0, X, ) and their derivatives,
which in turn are expressed through the precollision potentials
Bl (x~,X)and Bz(er, X 1) and their derivatives.

The next step is to use the Yang-Mills equations to write
the precollision potentials in terms of the color charge dis-
tributions of the incoming ions. One then averages over a
Gaussian distribution of color charges within each nucleus.
The average of a product of color charges can be written
as a sum of terms that combine the averages of all possible
pairs, which is called Wick’s theorem. We use the glasma
graph approximation [29] which means that we apply Wick’s
theorem not to color charges but to gauge potentials.

The correlator of two precollision potentials from different
ions is assumed to be zero as the potentials are not correlated
to each other. The building blocks of all physical quantities
we study are the correlators for two potentials from the same
ion

SUB(RL.51) = lim (B, 3B, 0. F) n=1.2
“)

and their derivatives. The correlators [Eq. (4)] are expressed
through the color charge surface density of a given ion p (X, )
or (X)), see Sec. II of Ref. [10]. These functions are a
phenomenological input to our calculations, and we have used
a Woods-Saxon distribution projected on the plane transverse
to the collision axis.

Our results are obtained for the SU(3) gauge group, g = 1,
the saturation scale Q; = 2 GeV, and infrared cutoff m = 0.2
GeV. We also use the relation jt = Q?/g*, where fi is the value
of wy(X1) and u, (X)) at the center of the nucleus. If not stated
otherwise, the glasma energy-momentum tensor is computed
for Pb-Pb collisions at eighth order of the proper time expan-
sion (all contributions up to eighth order are summed).

III. EQUATION OF UNIVERSAL FLOW

In this section we explain why the glasma is expected to
behave similarly to a fluid. Our arguments are inspired by the
study [9] where an equation for the flow transverse to the col-
lision axis was derived adopting a few assumptions relevant
for the early stage of ultrarelativistic-heavy-ion collisions. We
arrive at the same equation, which we call ‘the equation of
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universal flow’, but our derivation presented in Sec. II[ A is
somewhat different. In Sec. III B we explicitly show that the
assumptions used to derive the equation of universal flow are
satisfied by the energy-momentum tensor obtained in [10]
using an expansion in powers of 7. A similar analysis is given
in Sec. 4.5.2 of Ref. [13]. We further show that the equation is
exactly satisfied order by order by the energy-momentum
tensor obtained with a proper time expansion up to seventh
order.

A. Derivation

The equations of relativistic hydrodynamics are obtained
from the continuity equation of the energy-momentum tensor

VT = 9,T" + Tl TP +T) T =0, (5

where T#” is the energy-momentum tensor and V, is the
covariant derivative which, in the case of curvilinear coordi-
nates, includes Christoffel symbols, denoted I". One obtains
the hydrodynamic equations assuming a specific structure of
the tensor 7", which in case of ideal hydrodynamics is

Tho, = (E+Pulu’ —Pg, 6)

where £ is the energy density, P is the pressure, u* is the
hydrodynamic four-velocity normalized as u*u, = 1, and gh"
is the metric tensor. Since the four-velocity is normalized,
there are five functions which enter the continuity equation (5)
and one needs an extra equation to close the system. One
usually adds an equation of state which relates the energy
density to the pressure. In case of a conformally invariant
system, the energy-momentum tensor is traceless and the ideal
fluid form (6) provides £ = 3P.

There are three facts that are needed to derive the equa-
tion of universal flow.

(i) The glasma evolution is studied only in a very short
time interval after its formation.
(i) The glasma energy-momentum tensor is initially di-
agonal.
(iii)) The glasma is invariant under Lorentz boosts along
the collision axis.

In Minkowski coordinates the initial energy-momentum
tensor is diagonal and T" =T =T = —T% = &,. One
expects that the diagonal components of the energy-
momentum tensor remain much bigger than the off-diagonal
ones at very early times. Since the glasma is boost invariant,
the energy-momentum tensor in Milne coordinates is indepen-
dent of the space-time rapidity 1. The continuity equation (5)
in Milne coordinates and with v = x provides

< 8 + 1)Trx+ aTXx + 8Tyx _0 (7)
T T ax ay

where the vanishing term 97 /97 is omitted.

We write the energy-momentum tensor in Milne coordi-
nates in terms of the components of the tensor in Minkowski
coordinates. Since we are interested in the glasma in the
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FIG. 1. The left and right sides of Eq. (11) for ¢ = 0.06 fm,
n =0, and b = 2 fm. Contour plots cover the upper-right quadrant
of the transverse plane and the axes show the x and y coordinates in
fm. Values of components of the energy-momentum tensors are in
GeV/fm?.

midrapidity region we set n = 0. One finds

1

Ttt - th Ttx Tty

1 1 1 172y

TMV B ;TZI -L-_ZTZZ ;TZX ;TZ} (8)
Milne — 1 ) .

Txl = Tz T T

T Lpye pox T
T

Equation (8) shows that at n = 0 the components of the
energy-momentum tensor that enter Eq. (7) coincide with their
counterparts in Minkowski coordinates up to factors that are
powers of 7 (the components 7™, T*, T T are the same
in both coordinate systems for any 7). We also observe that for
n = 0, we have z = 0 and T = ¢. Replacing the proper time t
by ¢t and T™ by T, Eq. (7) becomes

o I\, , ~oT™
(8t+t>T o =0 ®
where we have ignored the term that depends on 7°* which
is much smaller than 7 at early times [see Eq. (13) and the
explanation below]. We will assume that 7** weakly depends
on time [see again Eq. (13) and the explanation below], which
means that Eq. (9) is solved by

Tt 1 taT’”‘ n C (10)
2 ax t’
where C is an arbitrary constant. Since 7" = 0 at t = 0 we

obtain the equation

. 1 oT™
TV = —=1t
2 ox
which tells us that the flow is generated by the gradient of
pressure, similarly to the Euler equation.

In Refs. [10,11] we obtained the energy-momentum tensor
of the glasma from Pb-Pb collisions using a proper time ex-
pansion of chromodynamic potentials. In Fig. 1 we show the
left and right sides of Eq. (11) as contour plots in the trans-
verse x-y plane, for ¢t = 0.06 fm, n = 0, and impact parameter
b = 2 fm. Figure 1 clearly shows that Eq. (11) is satisfied with
good accuracy. To obtain a quantitative measure we calculate

_ L= IR|
LI+ IR|

, an

=0.184,
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where |L| and |R| indicate the average over the transverse
plane of the absolute value of the left and right sides of
Eq. (11).

Initially 7" = T** and approximately equality is expected
to hold at later times that are not too large. Consequently,
Eq. (11) can be written as

- 1 ar"
T ~ ——1t ,
2 0x

which is the equation of universal flow first obtained in [9].
There is an analogous equation with x replaced by y. In the
subsequent section we will show that it is solved exactly order
by order in the proper time expansion. Although the derivation
suggests that Eq. (12) is an approximation to Eq. (11), in fact
Eq. (12) is more precise.

12)

B. Order by order analysis

Keeping terms of order not higher than t!, the energy-
momentum tensor of the glasma computed in Refs. [10,11]
has the form

Iy” 1 T o rTlv”‘
TH T Tln 7z T—ng + Torm Ton Ton' (13)
Milne T Tlxr TOX n Toxx 0 s
. ) Y
Ty TOW’ 0 To‘y

where T,V is the coefficient of term in 7#" that is proportional
to 7. We note that the term proportional to T =2 in T appears
because the tensor is written in Milne coordinates.

Equation (13) shows that the off-diagonal component 7~
is higher order in t than the diagonal components 7** and 77,
which allows us to drop this term when we go from Eq. (7) to
Eq. (9). One also sees that the leading contribution to 7+ is
time independent, which justifies the assumption we made to
solve Eq. (9) and get the solution (11). Since T;/* = T* =
T," = —T"] = & and at midrapidity 7" = T", T™ =T"
and t =1, Eq. (11) gives

19Ty
2 ox
Thus we see that the equation of universal flow (12), which
we argued is approximate at early times, is satisfied exactly at
lowest order in the proper time expansion.
The natural generalization of Eq. (14) to higher orders in
the proper time expansion is

T]t)C —

(14)

fo _ 187’;1”
n+1 — 2 ox .

Using the explicit expressions of T, and T’ for n =0,
1,...,6,7obtained in [10,11], we have checked that Eq. (15)
is exactly satisfied by these coefficients at n = 0. It is reason-
able to expect that Eq. (15) is satisfied at midrapidity for any
order n in the proper time expansion. In this case the equa-
tion of universal flow (12) for glasma is not approximate but
valid not only for short times but for any time at midrapidity.
When values of n are small but nonzero the violation of
Eq. (15) is small. For a symmetric collision of equal size
ions with centers displaced symmetrically in the x direction
by +b/2, the violation for n # 0 is odd under interchange of

5)

the two ions. It is even under (7, l;) — —(n, l;) andat R=0
it is odd under b — —b. Figure 2 shows contour plots of the
differences of the two sides of Eq. (12) as a function of x and
b for y =0 and n = £0.5. The energy-momentum tensor is
computed at T = 0.04 fm at seventh order in the proper time
expansion.

IV. GLASMA AS IDEAL OR ANISOTROPIC FLUID

In Sec. III we showed that the glasma energy-momentum
tensor satisfies the equation of universal flow (12) and we
therefore expect that, at least in some ways, it will behave
like a fluid. In this section we investigate the extent to which
the glasma energy-momentum tensor can be modelled with a
hydrodynamic form.

If the glasma were an ideal fluid its energy-momentum
tensor would be given by Eq. (6). Since the glasma
energy-momentum tensor is traceless 7% = 0, one gets the
equation of state £ = 3P and the energy-momentum tensor
(6) becomes

w4 oo v
Tideal_3guu

1 v
;€8 (16)
Since the glasma initial longitudinal pressure is negative,
we expect that anisotropic hydrodynamics [6,7] will provide
a better description. We therefore consider
Th = (&4 Prw'u’ — Prg"’ — (Pr — Pp)z*z", (A7)

aniso

where Pr and Py, are the transverse and longitudinal pressures
and the four-vector z* defines the direction of the longitudinal
pressure. It is space-like, orthogonal to the fluid four-velocity
(u*z,, = 0) and normalized as z#z, = —1. In the local rest
frame of the fluid element we have u* = (1,0, 0, 0) and z* =
(0, 1, 0, 0). The energy-momentum tensor is diagonal and of
the form T"" = diag(&, P, Pr, Pr). Due to the tracelessness
of the glasma energy-momentum tensor, the equation of state
is€ =2Pr + Pr.

Although a dissipative contribution is not explicitly in-
cluded in Eq. (17), the corresponding hydrodynamics [6,7]
is not ideal. Entropy production proportional to Pr — Py is
postulated, which provides an extra equation that is used to
close the system of hydrodynamic equations. When Pr and
‘P become equal to each other, the entropy production ceases
and anisotropic hydrodynamics changes into the ideal version.

Our aim is to assess how well the glasma energy-
momentum tensor T can be represented by the tensor

lasma
(16) or (17). For thisg purpose we calculate Tg’fa‘;ma at a large
set of grid points in the transverse x-y plane. At each point
we find the parameters £, Pr, Pr, u*, and z** which enter
either the tensors (16) or (17) as follows. We find the eigen-
values 2 and eigenvectors v* of the equation T, v, = Av*.
Since the energy-momentum tensor is a 4 x 4 matrix that
is symmetric and real it has four eigenvectors and four real
eigenvalues. One eigenvector is time-like and the remain-
ing three are space-like. The eigenvalue corresponding to
the time-like eigenvector is identified as the energy density
and the eigenvector is the fluid four-velocity. We note that
Thow, = Th uw, = Eu*. The negative eigenvalue is identi-

fied as P. The transverse pressure is then Pr = (€ — Pr)/2.
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FIG. 2. The differences of the two sides of Eq. (12) as a function of x and b at y = 0 and t = 0.04 fm at seventh order in the proper time

expansion. The left panel is n = 0.5 and the right is n = —0.5.

The space-like eigenvector z* could be obtained in two differ-
ent ways. We could define it to be the space-like eigenvector
that corresponds to the negative eigenvalue. Alternatively we
could find z* by Lorentz transforming the corresponding vec-
tor in the local rest frame z{ﬁf = (0, 1,0, 0) to the reference
frame moving with the fluid four-velocity. Both of these meth-
ods give similar results.

We have applied the procedure described above to
construct T;> and T from the glasma energy-momentum
tensor 7T~ computed using the methods developed in
[10,11,24]. We displace the centers of two equal size colliding
ions symmetrically about the x axis. The energy-momentum
tensor is symmetric which means it is fully determined by
the ten components: T, T T TY T® T T¥ T,
T%,T%. At z =0, the components 7%, T and T¥ are
identically zero. For zero impact parameter there is cylindrical
symmetry and thus 7 =T", T% =T% and T =T».
Consequently, when b = 0 and z = 0 the energy-momentum
tensor is determined by the 5 nonzero components.

In Fig. 3 we show contour plots of the nonzero com-
ponents of the three energy-momentum tensors we have

calculated for impact parameter b = 0, space-time rapidity
n =0 and at time ¢ = 0.06 fm. The left, middle, and right
columns show T, Torico» and Ty, respectively. The con-
tour plots cover one quadrant of the transverse plane and
the axes show x and y coordinates in fm. Values of compo-
nents of the energy-momentum tensors are given in GeV /fm?.
The energy-momentum tensor of ideal hydrodynamics rep-
resents the 77, 7x, and xx components of the glasma tensor
very well, but it badly fails for zz and xy. In case of the
zz component this is of no surprise as the negative value
T jjasma is in evident conflict with the assumption of isotropic
pressure adopted in ideal hydrodynamics. Anisotropic hy-
drodynamics, which is designed to deal with anisotropic
systems, works better. The contour plots of all components
of T are very similar to those of T . except for the
xy component. It should be noted however that the value
of this component is much smaller than the other nonzero
components.

To quantify the difference between the glasma energy-
momentum tensor Tg?aima and different hydrodynamic formu-

lations we look at the measure

o S J7\\2
Zj (Tgll/'avsma(xj_) - Till;;ro(xJ_))

nv
Uhydro -

where the sums are over all points in the transverse plane at which the tensors are computed. The measure o
If a component vanishes for both 7"

factor of 2 gives the relative difference between 7" and T""

glasma

lasma

When b =0, n =0, and t = 0.06 fm the measures (18) are

0003 0 0658 0.658
o | 0o 189 0 0
Tideal T 10,658 0 0328 0.968 |’

0658 0 0968 0.328

These results show clearly that ideal hydrodynamics cannot describe the negative value of 7.5

v - Vo2
Z J (Tglltasma (xL) + Th';dro (xi )

hydro*

(18) is ill defined. In such a case the components of Ty, .. and 7,05

[

(18)

v

hydro Multiplied by a

vasma and 700 the measure

exactly agree with each other and we just set ¥ to zero.

0.004 0 0727 0.727
" 0 0 0 0
0727 0 0.003 0.973
0.727 0 0973 0.003

19)

aniso —

while anisotropic hydrody-

glasma

namics represents fairly well all components of the glasma energy-momentum tensor. The values of a}{‘y':,m averaged over all

components are (¢;" ) = 1.51 and (c*" ) = 0.304.

ideal aniso
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FIG. 3. Components of T;, (left column), 7 (middle column), and 7;7avsma (right column) at b = 0, n = 0, and ¢ = 0.06 fm. Contour
plots cover the upper-right quadrant of the transverse plane, the axes show x and y coordinates in fm. Values of components of the energy-

momentum tensors are in GeV /fm>.
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We can also consider collisions with nonzero impact parameter and nonzero values of spatial rapidity. When b = 2 fm, n = 0,

and t = 0.06 fm the measures (18) are

0.003 0.922 0.648 0.647
v 0.922 19.1 0.979 0.959

0.004 0.912 0.716 0.716

" 0.912 0.000 0.0122 0.022

% = | 0.648 0979 0328 0.800 [ %o = 0716 0.012 0003 0.849 | (20)
0.647 0.959 0.809 0.328 0.716 0.022 0.849 0.003
The average values of crt{;,‘ém are {0/} = 1.86 and (o ) = 0.404. When b = 2fm, n = 0.5, and t = 0.06 fm the measures
(18) are
0.199 0.138 0.544 0.560 0.080 0.402 0.616 0.625
w _ |0.138 158 0.752 0.442 w _]0.402 0.074 0.743 0.543 @1
Tideal = | 0.544 0.752 0.208 0.666 |> aniso = 1 0.616 0.743 0.079 0.701 |

0.560 0.442 0.666 0.208

The average values of o ;. are (0y4.,) = 0.519 and (o)) =
0.473.

In all cases ideal hydrodynamics fails to accurately repro-
duce the zz component of the energy-momentum tensor and
consequently gives a larger relative error when compared with
the CGC result.

The measure (18) provides the relative error of the two
tensors 7., and 704 taking into account all tensor com-
ponents. The components that are numerically very small like
T* can contribute to the sum with equal importance as the
diagonal elements that are large. An alternative definition
of the measure that weights the different components of the
energy-momentum tensor according to their numerical value
can be constructed by using the ¢ component of the energy-
momentum tensor in the denominator

~uy Z,i (Igllal;ma()_éi - ThI;;ro()_éL]))2 22)
Zj (’Igltasma(%l) + ’Iﬁ}idro(}L))z
Using this definition we obtain the results shown in Table 1.
The energy-momentum tensors are computed at ¢+ = 0.06 fm.
Anisotropic hydrodynamics consistently does better than ideal
hydrodynamics for all values of b and n. The improvement is
about a factor of 10 when n = 0 but at n = 0.5 both versions
of hydrodynamics model the glasma almost equally well.
Since the glasma has been found to evolve towards ther-
modynamic equilibrium [10,11], see also the review [12], one
expects that the hydrodynamic mapping should be closer to
the glasma energy-momentum tensor at larger times. To verify
this expectation we show in Fig. 4 the average measures (18)
(left panel) and (22) (right panel) as a function of time for the

o-hydro

TABLE I. The differences of T, and 7,0  quantified by the

glasma
measure (22). The energy-momentum tensors are computed at ¢ =

0.06 fm.

b [fm] n (&iﬁ-:al) <&z:;:)<0>
0 0 0.0436 0.0042
2 0 0.0438 0.0042
2 0.1 0.0433 0.0085
2 0.5 0.0417 0.0395

0.625 0.543 0.701 0.079

(

energy-momentum tensor at b = 1fm and n = 0. The solid
blue line represents ideal hydrodynamics and the dotted blue
line is without the zz component which is the most difficult for
ideal hydrodynamics to capture. The green line is the result for
anisotropic hydrodynamics. The glasma becomes more and
more similar to a fluid as the time advances, and anisotropic
hydrodynamics is a better model than ideal hydrodynamics,
or ideal hydrodynamics without the zz component.

V. ELLIPTIC FLOW VS. INITIAL ECCENTRICITY

The glasma elliptic flow can be quantified by the Fourier
coefficient, v,, and the spatial eccentricity of the system, ¢,
defined as [10-12]

fdzR (T”)Z—(T'>‘)2
/(T"‘)2+(T’-‘")2

Vy =
2 fdzR (Ttx)2+(le)2
R2_R2
deR Yy T
/R+R:
£ = ki 23)

JdR JR2+R2T"

We emphasize that this definition of v, is not directly re-
lated to the elliptic flow studied experimentally in relativistic
heavy-ion collisions, see the review [30]. The measured quan-
tity characterizes the asymmetry of the azimuthal distribution
of final state particles produced in collisions. Its description
in hydrodynamic models requires a proper treatment of the
conversion of fluid into particles and the disintegration of the
system at a freeze-out hypersurface [1,2]. Consequently the
azimuthal asymmetry of the fluid flow, which is quantified by
the coefficient v, defined by Eq. (23), is significantly washed
out by the thermal motion of final state particles.

The elliptic flow observed in relativistic heavy-ion colli-
sions is zero or almost zero for » = 0 and grows as b increases
[30]. The system’s initial eccentricity, €(0), behaves similarly
and consequently the ratio v,/€(0) is independent or weakly
dependent on impact parameter [31]. This is called eccen-
tricity scaling and is generally taken as an indicator of fluid
behavior [1,2]. The idea is that in hydrodynamics the differ-
ence of pressure gradients in and out the reaction plane, which
is encoded in the system’s spatial eccentricity, is responsible
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Hv ~ uv
<o-hydm > ] <O-hydro >

12 ideal 0.10 - .

' mmma- ideal, no zz r }dea]

[ - (N g ideal, no zz

aniso -
1.0 - 0.08 aniso
et L 0.06 -~
061 ooaf  TTmealll
0.4 F 0.02 -
02 L 1 1 1 ] 1 1 1 1 Il Il
0.01 0.02 0.03 0.04 7 [fm] 0.02 0.03 0.04 0.05 T [fm]

FIG. 4. The average measure (18) (left panel) and (22) (right panel) for ideal and anisotropic hydrodynamics as a function time for the
energy-momentum tensors computed at » = 1fm and n = 0. The solid blue line represents ideal hydrodynamics and the dotted blue line is
without the zz component. The green line is the result for anisotropic hydrodynamics.

for the azimuthal asymmetry of the transverse collective flow
quantified by v,.

It was demonstrated in [10—12] that the glasma elliptic flow
v, (1) coefficient at small but finite time ¢ and the initial eccen-
tricity €(0) behave in a similar way as functions of impact
parameter. The ratio v,(¢)/€(0) does not show eccentricity
scaling but it has a dependence on b which is noticeably
weaker than that of v,(¢) and €(0). Specifically, when the im-
pact parameter grows from 1 to 6 fm, the elliptic coefficients
vy(¢) att = 0.06 fm increases by the factor of 10 but the ratio
vy(2)/€(0) decreases only by a factor of 3. This is shown in
Fig. 5. The quantities v,(f) and €(0) are calculated in three
different ways: directly from the glasma energy-momentum
tensor and from the energy-momentum tensors of ideal and
anisotropic hydrodynamics. Both ideal and anisotropic hydro-
dynamics give results that are very similar to what is obtained
from the glasma. This shows that glasma transverse dynamics
can be approximated by hydrodynamics.

VI. SUMMARY AND CONCLUSIONS

The evolution of quark-gluon plasma (QGP) produced in
ultrarelativistic heavy-ion collisions is well described by rela-
tivistic hydrodynamics starting from very early times after the

v,(z =0.06 fm)

collision when the system is far from equilibrium and highly
anisotropic. In Refs. [10,11] it was argued that this happens
because the glasma behaves as fluid even though it is out of
equilibrium and its dynamics is governed by the Yang-Mills
equation. In this paper we have further explored this problem.
In the first part of this paper we have discussed the equa-
tion of universal flow first obtained in [9], which shows that
the transverse collective flow in a given direction is due to the
gradient of the energy density of the system in that direction.
The equation comes from the continuity of energy-momentum
tensor under the assumptions that the system is boost invariant
and that the tensor is traceless and initially diagonal. We have
rederived the equation using Milne coordinates which greatly
simplifies the form of the energy-momentum tensor because it
is boost invariant. Using the glasma energy-momentum tensor
obtained in a proper time expansion we have also verified the
assumptions under which the universal flow equation holds.
The equation of universal flow has only been derived using
a set of assumptions that seem to restrict its validity to early
times and systems with weak transverse anisotropy. The most
interesting result of the first part of our paper is that the
universal flow equation is exactly solved, order by order, by
the glasma energy-momentum tensor to seventh order in a
proper time expansion. This suggests that the equation is more

v, (r = 0.06 fm)/&(0)

025 F 5L
0.20 | a4
015 f 3L

glasma glasma
0.10 —— ideal 2r — ideal

[ aniso aniso
0.05 | 1

1 2 3 4 5 b [fm] 1 2 3 4 5 b [fm]

FIG. 5. The elliptic flow coefficient v,(¢) atz = 0.06 fm and its ratio with the initial eccentricity €(0). Both quantities are computed directly
from the glasma energy-momentum tensor and from the energy-momentum tensor of ideal and anisotropic hydrodynamics.
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general than the derivation suggests and that it holds not only
for very short times but longer ones as well.

In the second part of this paper we have analyzed how well
the glasma energy-momentum tensor can be mapped onto
an energy-momentum tensor of ideal or anisotropic hydrody-
namics. We have shown that ideal hydrodynamics represents
the glasma reasonably well with the exception of the zz
component. Anisotropic hydrodynamics works very well. The
similarity of the results obtained from T,p.C . and 7,0} shows
that the hydrodynamic-like behavior of glasma is related to
bulk properties of the glasma energy-momentum tensor which
survive when the tensor is represented by a hydrodynamic
form. Since the glasma evolves towards thermodynamic equi-
librium, one expects that the hydrodynamic mapping becomes
more accurate as time grows. Our analysis fully confirms this
expectation.

In the last part of this paper we have returned to the pri-
mary observation made in [10-12] that glasma elliptic flow
is correlated with the spatial eccentricity of the system. Both
quantities increase with impact parameter, and the ratio of the
elliptic flow coefficient at finite proper time divided by the
initial eccentricity depends more weakly on impact parameter
than v, itself. We have shown that these features survive when
the glasma energy-momentum tensor is represented by either
ideal or anisotropic hydrodynamics.

Our analysis provides a simple and natural explanation
of the surprising success of hydrodynamic models of mat-
ter produced in ultrarelativistic heavy-ion collisions. These
models properly describe a system which can be far from
equilibrium because glasma evolution driven by non-Abelian

dynamics strongly resembles hydrodynamic behavior. The
energy-momentum conservation encoded in the continuity
equation of energy-momentum tensor, combined with the ini-
tial diagonal character of the tensor, its tracelessness, and the
boost invariance of the system, play a crucial role.

Finally, we mention some possible improvements and fu-
ture directions for this work. One important simplification in
our approach is the assumption of boost invariance. Clearly
it would be desirable to go beyond this approximation and
include some of the effects of the longitudinal dynamics.
Unfortunately this would be very difficult because it would
require a modification of the ansatz that determines the struc-
ture of the gauge potential.

It would be also desirable to check whether the fluid-like
behavior of glasma produced in heavy-ion collisions also
occurs in smaller systems obtained from proton-nucleus or
proton-proton collisions. Our approach could be easily extrap-
olated to small mass numbers of colliding nuclei but the extent
to which these results would be reliable is unclear. Since our
method is fully classical, we assume that the system’s dynam-
ics is dominated by long-wavelength modes. This assumption
becomes less reliable for smaller systems because the role of
short-wavelength quantum modes increases.
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